Thursday, November 24, 2011

Fractals, Feldman, and Flabbergastation

If you were to write “Morton Feldman” right next to "zn+1 = zn2 + c” on a piece of paper, the amount of confused looks you would get would probably be… a lot. According to society, zn+1 = zn2 + c is simply an equation, something incomparable to an artist—but in that equation lies the tangible way of expressing the source, or representation, or one of the most celebrated things in math and nature. If we could reduce Feldman and zn+1 = zn2 + c down to just their meanings in the world of creation, we might have something pretty similar. And in that world, it doesn’t really matter if you’re made up of a full head of slicked back, dark hair or a handful of symbols. 
A couple of weeks ago I got to hear Feldman’s “Clarinet and String Quartet” live at the Church of Beethoven. Not only was that one of the only concerts where it seemed perfectly appropriate to lay down on the floor in a sort of zoned-out, meditative state, but it was the first concert in a while where the explanation of the piece stayed with me as much as the piece itself. The emcee/clarinetist of the piece, James Shields, told the audience about a theory he had on Feldman’s work; if a phrase of music, such as Mozart, was stretched out to reach 40 minutes, maybe we would have a Feldman piece.  

That brought up the idea in me of something seemingly opposite to music—fractals. I wouldn’t doubt that everyone had a phase in middle/high school math where fractals were a small obsession (at least I’m hoping that’s not just me…). If not, a fractal is “a rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole.” zn+1 = zn2 + c  is an equation that describes a large amount of the Mandelbrot set, one of the most famous fractals. Basically, fractals are these things: 

Julia set
Some other set

Mandelbrot set
Fractals aren’t just an idea in the world of graph paper and computer programs, either. Like the Fibonacci sequence, fractals are found in nature, such as in ferns, snowflakes, rivers, and romanesco broccoli.  If something has a self-similar structure, it’s an approximate fractal. That’s the most important thing about fractals that relates them to sound—when magnified, their sequence keeps repeating, expanding, and becoming even more intricate. Fractals themselves are an eerie idea—mathematicians discover them just as celestial bodies thousands of light-years away are found. The Mandelbrot set was first discovered and mapped out in small asterisks like a surfacing underwater creature. 

First picture of the Mandelbrot set

Romanesco broccoli... delicious and mathematically trippy
Morton Feldman and his music, on the ostensibly other hand, are not extraterrestrial-looking shapes on computer screens. But, if looked at with the lens of the theory offered at the concert, Feldman’s pieces could be similar to fractals. While Feldman’s music is part of the indeterminacy movement and fractals are specified to the max, what makes the music of composers like Feldman mind-boggling is their ability to be received in an infinite amount of ways. The theory allows Feldman’s music, and all music in general, to be seen as a medium that is made up of only itself, which, for all we know, is pretty true. This means that, like fractals, music could be self-repeating, and all we hear is its manifestation in certain sizes. Perhaps each symphony is made out of little symphonies, and each note in that symphony is a collection of an infinite amount of compositions. Let’s take, for instance, Feldman’s “Clarinet and String Quartet” to think about.  
In this piece, the string quartet creates a cloud of indecipherable eeriness while the clarinet lurks in the background with a simple chromatic melody: B, C, A, B flat. The melody is stretched and snapped, rarely played the same way twice. While the clarinet continues this, the string quartet changes from echo-filled to sinister and back again. Throughout the entire piece, the clarinet stays as the holder of order. Its repeated notes and different chromatic melodic cells lead the strings like a magnet staying attached to another through a surface.   The music doesn’t seem to follow any set path, but instead wanders through the dark, encountering miniscule areas of action. 
Like the way objects look under microscopes, Feldman’s “Clarinet and String Quartet” is murky and slow moving. If we, as listeners, can let the music take on a life of its own and completely abandon any specified meanings assigned to the piece by Feldman or others, we can put it in the position of a microscope image—if a phrase of Mozart was stretched out to its limits, maybe we would find little pieces of Feldman, Cage, or Wolff inside, like the alternate universes that were found in space by Dave in “2001: A Space Odyssey.” Even though this might seem like a dubious prospect, fractals have technically existed since the dawn of time—it just took sophisticated mathematicians to surface them from the depths of the math world. And even though these mathematicians found the shapes of fractals such as the Mandelbrot set, if they never thought of going further into those shapes, we wouldn’t know about their self-repeating aspects. We can certainly slow down phrases of classical music, but, like a microscope, maybe there is a certain setting that exposes these alternate dimensions of sound that we haven’t found yet. 
Then again, maybe there’s not. Maybe Mozart slowed down sounds like 5 minute-long chords that we’re all familiar with. But the point is this: music can take different forms and identities, from classical to chamber pop to indeterminate, but it’s a medium that has no real physical substance when stripped down to its core meaning. Music isn’t tangible matter that we can stain, put on a slide, and take apart. All we know is that it is made up of itself—kind of like a fractal, no? Maybe, inside of itself, music is made up of separate little compositions that lurk inside of the microscopic nooks and crannies of other compositions. Or, maybe that 80 minute Mahler symphony is a large scale version of the little sounds that make up each vibration that comes out of a cello. Music is mind boggling. And I don’t think asterisks will ever be able to map out something like it. 

Sunday, November 20, 2011

Sequenza21 reviews

If my posting seems a little infrequent, it's because I'm writing occasional CD reviews for the blog Sequenza21, and very excited to be doing so! If you're an avid Elena fan (I'm hoping that succeeded in coming off as sarcastic), check out the CD review page every once in a while for my posts (most recent = Peter Garland). BUT, the blog posts will still be just as frequent as I can make them. Thanks for reading my publicity post/probably-not-necessary disclaimer.


Monday, November 14, 2011

Breaking the Silence

“Music means everything to me; it’s the only thing that I know that can break the silence,” said Celeste Lansing.
John Cage, a scientist, or the inventor of earplugs might argue that silence doesn’t exist. But for Lansing, sounds, or the absence of them, are more than just measurable waves. As a result, silence is much more of a force than its dictionary definition gives it credit for. And music is much more than merely something to fill the air.
Lansing is a 16-year-old composer from Montezuma Creek, Utah. Lansing didn’t start composing for performance until she was a freshman in high school; now, on November 18, her string quartet “Pink Thunder” will be played by members of the New Mexico new music group Chatter as a part of the “New Work-Old Traditions: Pushing the Boundaries of Classical Music” concert focusing on Native American composers.

Along with Lansing’s piece, music will be played by other Native American composers: Jerod Impichchaachaaha' Tate, Louis W. Ballard, and New Mexico native Raven Chacon. Tate’s “Taloa’Hiloah” or “Thunder Song” for timpani is on the program. “Kachina Dances” for cello and piano by the legendary Ballard will be played as well.
Chacon is a local artist and musician who often experiments with noise music, and he will be premiering his piece “Biyán” for violin, cello, flute, clarinet, and percussion commissioned by Ensemble Music New Mexico. 

Celeste Lansing


Listeners might have their own preconceived notions about what Native American music is like. But to a composer, heritage can inspire many aspects of music, from the specific instrumentation to the sources of the rhythms.
“My Native American heritage inspires my music the most because everything I do, hear, or see I can make music with! It surprised me because most of the rhythms I have in my pieces were inspired from tapping a pencil, how the trees moved, or hearing an odd sound in the hallway or at home,” said Lansing.
Lansing’s “Pink Thunder” for string quartet was her first project with the Native American Composers Apprenticeship Program. Lansing had the opportunity to have ETHEL, the superstar contemporary string quartet, play her piece at their annual music festival at the Grand Canyon.
I got to hear “Pink Thunder” a few months ago when Church of Beethoven, a branch of Ensemble Music New Mexico, played it on a Sunday morning.
The piece is like a nugget of bundled brainwaves—ranging from quasi-Xenakis to a serene, almost lonely melody that flows from one instrument to the next, the piece is filled with a range of inspiration that bind together through calm, settled moments. The piece reaches a climactic pile of glissandos, but the piece is so clear and decisive that they never become trying. 
“I got the inspired by from listening to a lot of METALLICA, mostly songs from the Black Album! I loved how they used the double foot pedals and they had that dark, heavy, and mysterious sound,” Lansing wrote in an email. “I came up with the cello part first and then worked around it. I used the piano to make up rhythms, sounds, etc. Before I knew it, it sounded like thunder.”
Descriptions like this make me eager to hear next generation’s composers’ music. Knowing of inspiration coming from organic, real areas creates music that soaks into the brain as easy as water into a sponge, or like natural food to the body. Lansing told me of a piece she wrote and dedicated to her art and basketball teacher Michael V. Porter/Cheii Porter. “Cheii” means grandpa in Navajo.  
“He got sick during the summer, and he really moved me while I was writing; this was the first piece that I actually wrote and incorporated what I was feeling at the time. I’ve never done that before. He always told me to finish strong so I twisted it and named the piece ‘Worth Finishing.’”
Here’s a place where the name of the November 18 concert comes in—“New Work-Old Traditions.” Lansing’s work, as well as Chacon’s, Tate’s, and Ballard’s, is contemporary. But in a world where new pieces of music get churned out and released almost every minute online, it’s nice to be able to look at pieces like “Pink Thunder” or “Worth Finishing” and see the places they came from, places that everyone can understand.
Lansing has heard “Pink Thunder” played twice, both by ETHEL, but she is excited about it being performed by Chatter.
“The people that will be there that night will get a little taste of what Celeste has to bring to the table.”